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Shear response of a smectic film stabilized by an external field
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The response of a field-stabilized two-dimensional smectic liquid crystal to shear stress is discussed. Below
a critical temperature the smectic film exhibits elastic response to an infinitesimal shear stress normal to the
layering. At finite stresses free dislocations nucleate and relax the applied stress. The coupling of the disloca-
tion current to the stress results in non-Newtonian viscous flow. The flow profile in a channel geometry is
shown to change qualitatively from a power-law dependence to a Poiseuille-like profile upon increasing the
pressure head.
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[. INTRODUCTION tuations destroy even quasi-long-range translational order at
any nonzero temperature. One easily finds that phonons give

Thin layers of elongated molecules exhibit a variety ofrise to exponential decay in the order parameﬂe(f)
different liquid crystalline phases differing in the degree szexF{iqou(F)] whereqo=27/d is the wave vector associ-

positional and orientational order from isotropic films. COM- 4ted with the layer spacind [10]. In order to moderate the
plex rheological properties are common, in particular, wherygte ot of thermal fluctuations one can apply an in-plane ori-

external orienting fields affect the alignment of the mol-gping external field. The corresponding free energy then has
ecules. The coupling of the velocity field to the liquid- ) pa modified tq11]

crystalline order gives rise to anisotropic viscosities. Further-

more, nonlinearities introduce shear-rate-dependent effective

vitscosities, which include phenomena like shear thinning, F= %j d?r[B(d,u)?+ E(d,u)?]. (2)
etc.

Recent experiments on Langmuir monolaydrs3] on an ) i
air-water interface demonstrate the flow-induced microstructere E measures the coupling to the external field, e.g., an
tural deformations and orientation within a liquid-crystalline electric or magnetic field. The nematic director orientation is
film. In particular, the nonlinear shear response gives rise tgligned with the displacement field according t@
unconventional flow profiles in channel geometry. Since dis-= — CONSt,u on large scales. This property does not neces-
locations often play a prominent role in two-dimensionalSarily hold near the boundaries. As discussed in the Appen-
systems, the motion of these point defects is presumably rélix, there appears a characteristic length scale on which the
sponsible for many of the observed phenomena. director adjusts to the displacement. _

Here we focus on a smectic film floating on a liquid sub- One can eliminate the anisotropy in E@) by a simple
strate. Such systems can be realized by suspending certafflume-preserving rescaling, and the static properties are
disk-shaped molecules on an air-water interfazeg]. These  thus determined by the universality class of %¥ model.
disk-shaped molecules exhibit columnar phases in three dithere is a critical temperatur€.= VBE separating a low-
mensions. Restricted to two-dimensional interfaces thestémperature smectic phase characterized by bound disloca-
systems exhibit two phases reminiscent of the threetions and power-law correlations itw(r)* (0)) and a
dimensional columnar order. For the face-on configuratiorhigh-temperature nematic phase with exponential decaying
the structure factor reveals hexatic order, i.e., short-rangerder parameter correlations and free dislocations. Varying
positional order and quasi-long-range orientational order fothe external field allows control of the anisotropy. In particu-
the nearest-neighbor bond vector. In the second case, tlar, since the raticc/B is preserved under renormalization,
edge-on configuration, the molecules order in two-one can adjust experimentally the critical temperaflye
dimensional columns with liquidlike positional order within  Here we discuss the dynamical properties of the stabilized
the columns. This second case is thus the two-dimensionaimectic liquid crystal beloW,. The long-wavelength renor-
analog of a smectic phase, which we discuss in this paper.malized stiffness constanE; andBg now attain finite non-

Smectic films are two-dimensional layered systems charzero values and the film reacts as an elastic medium to an
acterized by an elastic free energy that descibes longnfinitesimal applied shear stress perpendicular to the layers.
wavelength distortions of the layers in terms of a displaceHowever, a finite stress can trigger the proliferation of free
ment fieldu(r) [9]. Up to quadratic order, we have dislocations that result in shear flow.

F= %f d2r[B(&Zu)2+ B)\Z(&)%U)Z], (1) II. HYDRODYNAMICS

The long-wavelength and low-frequency dynamics of a
where the first term deals with layer compression, while thesmectic film is governed by hydrodynamic equations for the
second term is related to splay distortions. The thermal flucbroken symmetry variable, viz., the layer displacement
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and the conserved quantitied]. For good thermal conduc- -4 2
tivity on a water substrate no temperature gradients can builc=~
up and energy conservation can be ignored. Furthermore W
specialize to incompressible smectic films, setting the massz
density p=const. Mass conservation then |mpI|es the con- =~

straint d,gy+d,9,=0 for the momentum densnyg(x 2). :‘
Similarly the trace of the viscous stress tensor also drops ou
of this long-wavelength low-frequency description. The vis- =/
cous stress tensor then has only two independent componen=# QQ % 08 QQQ i OO
that have to be related to the two of the strain rate tensoromgg QQ%Q Q 0 0 0 0 0

From symmetry there appear two indpendent viscositie
and we write the constitutive equation for the viscous =
stress a$—>,(z: v(9,9x+ 9x97), O'>,<x:(V_V,)‘9xgxa Uéz:(v
—v")d,9,. The linearized equations of motion then read

du=0,/p+\(BI+EdHR)U, (3a)

atgx:_ﬁxp"_wﬁgx_*' v'943,9;, (3b)

2, 2
;== 9p+ (BI;+EdQU+ vdig,+ v’ 9,09, (30) FIG. 1. Layering of the elongated molecules of a two-

h d h . th dimensional smectic. The dislocation on the right half has positive
where, denotes the permeation constant gnthe pres-  .cparge » whereas the dislocation on the left possesses negative

sure. “charge,” The strains, exerts a Peach-Koehler force on the free

t . .
. If a constant eX'Fer_na| shear Str_eﬁ IS gpplled, the me-  jsiocations indicated by the arrows. The induced dislocation cur-
dium reacts by building up a stationary viscous momentument then relaxes the strain.

flow o€¥'=vd,9,. Since the layers are not distorted no elas-
tic stresses can build up to balance the external stress. Howility condition that allows us to sets,+J,d=4d,E, S,
ever, the medium does sustain an infinitesimal external stressJ,d=d,=. Choosing E=g,/p+\,(Bd,s,+Ed,s,) en-
<X by straining layers according ©@5x'= Ed,u. sures compatability with the dislocation-free dynamics, Eq.
The preceding paragraphs correctly descnbe the linear rg3a). Upon collecting terms one derives
sponse of the stabilized smectic film. The nonlinear re-
sponse, however, is qualitatively different. Finite applied
stresses create free dislocations in the displacement field that
can move and relax the stress. For two-dimensional smectics
dislocations have Burgers’ vectard along thez axis (see
Fig. 1). Hence, we can think of these dislocationssaalar
defects with chargen,= = 1. In the presence of plastic flow SO= —
due to the dislocation motion the film now exhibits viscous 92 5
behavior. A convenient way to incorporate the effects of dis- (5d)
locations is by switching from a description in terms of the  For the dislocation current we adopt a Fokker-Planck de-
displacement fieldu to the strainss,,s,. This avoids the scription. There is a diffusive current due to gradients in the
introduction of branch cuts in the displacement fie(c,z).  dislocation density. Symmetry dictates that the principal axis
Locally the strains are given b, = d,u,s,= d,u. However,  of the diffusion tensor are aligned with thg,¢)-coordinate
since the displacement field is no longer a single-valuegystem of the layers. Furthermore stresses induce motions
function, the line integra$r(s,dx+s,dz) does not vanish that result in a separation of dislocations of opposite charge.
for closed loopd”, but rather counts the number of enclosedFollowing Ref.[10] we write
dislocations in units of the layer spacidgConsequently the
curl of the strain is given by,s,— d,s,=m(r)d, where J=TxBdsn—TkgTd,m, (63
m(r)=%,_..m,n,(r) is the total “charge” dislocation _ _
density. The charges, = * 1 characterize the point disloca- Jo=~TEdsn—TkgTdm. (6b)
tions andn,(r)=3; 5(r r ,) is the number density of dis- The first terms on the right-hand side are known as the
locations of chargem Smce dislocations can be created Peach-Koehler forces and are the analog of the Magnus force
only in pairs, the overall dislocation density is conserved, N @ superconductor, see Fig. 1. The diffusion constants
=I',kgT and D,=TI",kgT refer to dislocation climb and
aym-+divJ=0. (4)  dlide. Since cIimb, i.e., motion perpendicular to the Burgers
vector, involves long-range mass transport one expEgts
Here J denotes the two-dimensional current of dislocation<T',. The free dislocation density(F)ziymﬁnv(F) van-
charge. In terms of the strains, Hg), is merely the integra- ishes in the equilibrium smectic phase since all dislocations

3tSx=9xQ, 1 p+ N pdy(Bd,S,+ Edysy) +J,d, (59
31S,= 0,9,/ p+\pd(Bd,S,+Ed,s,) — Iy, (5b)
dQx= —xpt V9§9x+ v' 943,9;, (50

9,0+ (Bd,S,+ EdyS,) + vd2g,+ v’ 9,049 .
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are bound. Thus thénear dynamics given by Eqg5) and B «2d?
(6) merely adds an anisotropic diffusive mode for dislocation Uo(@)=——In(e/ag)+2E.(ay), (12
motion to Eqs(3).

A nonzero free dislocation density(r) leads to viscous \here o= /242 is the distance of the dislocations in
response to an external sheafy' as shown in Ref[13].  scaled units andy~d is a short distance cutoff that signals
Shearing perpendicular to the layers of the smectic film tahe breakdown of continuum elasticity theory. The core en-
produce a nonzers,~d,u liberates free dislocations that ergy 2E(a,) plays the role of a chemical potential, i.e., the
then can relax the shear. Thus one has a most promine@hergy to create a defect pair at distarmggerelative to a
form of the phenomenon known as shear thinning, i.e., &jislocation free system. Since there are many pairs, the ef-
reduction from an infinite linear viscosity and a nonzero lin-fective interaction of a particular pair is a many-body prob-
ear elastic modulus to a finite nonlinear viscosity and zerqem. The pair carries a polarization cloud of bound pairs that
nonlinear elastic shear modulus. This is the subject of thgcreen the bare interaction. Following Kosterlitz and Thou-
next two sections where we adopt methods applied to supefess[11] this problem can be dealt with by the introduction
fluid helium films in Ref[12] to smectic hydrodynamics.  of a scale-dependent dielectric consta(e). The effective

interaction then reads

I1l. NUCLEATION RATE OF FREE DISLOCATIONS

242 ’
The free energy of Eq2) contains contributions from the U(o)= Ba’d JQ € +2E.(ag). (13
smooth part of the strain and from the interaction energy of 27 Jase(p')o’

dislocations. The strains can be decomposeds,asdy¢

+5;'"9, s,=3d,+s;'"9. Then the smooth part and the dis- The probabilityY (¢) per unit area to find a pair at distance
location interaction decouple provided one imposes the stregg is then determined by the effective interactiafi(o)
equlibrium condition =a, * exd —U(e)/kgT], or equivalently

EdysS"9+Ba,sS"9=0. 7) dy Ba?d?

do  2mkeTe(g)e ' ) 4

This relation is in fact the integrability condition that allows
the introduction of the Airy stress functidBs;'"%= —d,y,

Bs;'"9=d,x. Since the curl of the strain yields the disloca-
tion density, the Airy stress function is given in terms of the

In terms of a scale-dependent stiffnesK (o)
=Ba’d?/[47°ksTe(0)] and the dislocation fugacity,
wherey(0)?= Y (0), this is the first of the celebrated Ko-

solution of sterlitz recursion relations
1 1 -
= dxx T zdzx=m(r)d. ®) dy
B* E’*? ) o _
ding [2—7K]y (15
After a partial integration the free energy E@) can be o ) ) o
written The renormalization of the stiffness is due to polarization of
the dislocation pairs and is governed by the second recursion
I relation
F=Fo— %f d’r x(rym(r)d, €)
dK™* )
. . . =472, (16)
where the smooth fluctuations of the displacement field are dino
encoded in

The flow equations for the dielectric constant and the fugac-
F :;J d2rTB(d.)2+ E(9.d)21. 10 ity _th_en reveal the eX|stenqe of a Iow-temperatpre phase with
o2 [B(3.¢) (9:4)"] (10 a finite long-wavelength dielectric constant. Sird@) de-
. ) o ) _pends intrinsically only on the flow parametetIn(o/ay) the
The dislocation contribution is the smectic analog%of the in-first term in the effective potential is basically logarithmic
teraction energy of charges in electrostatics. Harfg) cor-  and binds the pair only weakly.
responds to the electric charge density ad) to the elec- In the presence of a strasy the pair is subjected to the
trostatic potential. As mentioned in Sec. | the electrostatid®each-Koehler forc&s,d that separates the pair mdirec-
analogy becomes complete after the volume preservingon in addition to the attraction force corresponding to Eqg.
transformationx= a¢, z={/a, with «=(E/B)Y* Equation  (13). For nonzercs, the total potential exhibits a saddle point

(8) then reads on thez axis and the pair can break up by escaping over the
barrier as illustrated in Fig. 2. This creates a pair of free
o7§x+ aﬁxzmdBaz. (11)  dislocations that contributes to the relaxation of the applied
shear.
The bare interaction energy of a pair of dislocations of op- The motion of bound pairs is again given in terms of a
posite charget 1 is then easily calculated to be Fokker-Planck equatiofl2]. Since climb motion is much
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s Jo=RK (o)l (alo)exr —mK({o)X%(cPZ3)], where the pro-
duction rateR= [ 7,dx reads

2 R=2kgTT ,a?y(£o)%¢, ‘€™ (o), (20)

For small strains, and not too close to the critical tempera-
bound ture, one finds{,>¢&_, where&_ is the correlation length
implied by the recursion relations, Eq4.5) and(16). Then
K({p) can be safely replaced by its large distance limit
free free K(o=0)=2/7[1+x(T)/4]. Here x(T) measures the dis-
tance to the critical point, and for temperatures closé to

one has(T)~(T.— T)¥2 Equation(15) then implies in this

z . _ . .

K/ regimey(e)~ ¢ X2 and correspondingly the production

rate exhibits a power-law dependence on the strain

R~|s,|4"X(M, 21
FIG. 2. Sketch of the effective potential for a dislocation pair in | X| (21)

the presence of shebgTy=U+Es.zd. The heavy line marks the 0 gynamics of the free dislocation density is governed
boundary of bound- and free-dislocation pairs. Breaking of a bouncb :
. ) ; . . _ "Dy the rate equation
pair occurs via escape over the saddle point. Since climb motion is
negligible compared to glide thecoordinate is effectivley frozen. gn=R—rn2 (22)
t .

slower than glidel’,<I';, the associated currents are pre- e recombination process of two free dislocations of oppo-
dominately unidirectional. With this simplification one de- ;i charge is encoded in the rate constanSince local

rives equlibrium is established much faster than dynamics of the
_ broken and conserved variables, one can assume that the free
atY - (92\72 ’ . . . . . .
dislocation density follows the rate adiabatically, i.e,
179 _Ruz_ |5,|2 X2
J=—2I',Y[d,U+Esd]—2kgTI',4,Y. X :

A stationary, uniform external stres$}' is balanced by a
Since we are dealing with thelative motion of a pair, the uniform strainEs,, Eq. (5d). This results in a nonlinear
diffusion constant is B,, whereD,=1"kgT refers to diffu-  dislocation flowJ,~s}, y=3+x(T)/2, which gives rise to
sion of a single dislocation. The escape rate of this effecshear strain rateg,g,= —J,pd. Upon collecting terms one
tively one-dimensional problem can be obtained by standarderives the nonlinear constitutive equation

methods. The saddle poiay={y/« of the total potential

determined by the implicit relatiod+ 2me(|Zo|) {oSxa@=0. 3y~ (oSXY?, (233
For definiteness we discuss the cage&l 0, i.e., the saddle
point lies on the positive axis. The Fokker-Planck equation y=3+x(T)/2. (23b)

(17) implies that.7, is independent of the coordinate. The

solution can be obtained in terms#f[U + Es,zd]/kgT by V. CHANNEL FLOW

writing
In this section we discuss the application of these ideas to
eldz = — 2kaTT.e%Y|” | 18 flow of the stablhzed.smectlc due to_ a pressure grad|ent
JZL Bz E (18 along a channel. The film layers are oriented perpendicularly

to the channel flow, i.e., the pressure gradient is alongzthe
Forz=+%= we expect that the dislocation probability density direction. Furthermore we assume that the channel is much
Y vanishes rapidly, whereas ftx| <z, it assumes its equ- wider than the correlation lengti_ so that the hydrody-
librium value. The right-hand side of EGL8) then simplifies  namic description is valid.
to 2kgTT',a, *. The left-hand side is dominated by the saddle  In the steady state afl derivatives vanish due to transla-
point and the integral can be extended-te. Upon expand- tional invariance along the channel, except for the pressure

ing near the saddle point and using the saddle-point equatiohgad 7' = — d,p=const. The equations of motion Eq®)
the Boltzmann weight can be approximated by then reduce to
{oe 2™ (&) x? a?(z—zy)? 0=0,8,/p+ N Ed;s,+J.d, (249
e‘/’=4—2ex 7TK(§O) 2 2—7TK(§0)—2 .
%Y(Lo) Lo b 0=7'+EdyS+ vd? 24b
(19 =m xSx T V0yQz. ( )

Here we neglected terms involving the derivative of the di-Furthermore we impose the no-slip boundary condition
electric constant, since these are small on large scales ag,(*a)=0 and vanishing permeation currenfs,(+a)
cording to Eq.(16). The dislocation current is then found as =0, where*a are the walls of the channel. Symmetry then
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implies 9,9,(0)=2s,(0)=s,(0)=0. The derivatived,g,  Science Foundation, through the MRSEC Program via

can now be eliminated from E@24) yielding Grants Nos. DMR-98-09363 and DMR-9714725. T.F. ac-
X knowledges the support by the Deutsche Forschungsgemein-
— 7' XIE=8,— 6°058— pvJ,dIE, (25  schaft under Grant No. Fr 417/2.
i H 1/2
where we introduced the permeation lengli (pvhp)”". APPENDIX: ALIGNMENT OF THE NEMATIC DIRECTOR

Since the dislocation current is nonlinear in the strain, the
flow profile depends on the pressure head. The combination
pvJ,d/E can be written as-s,|As|”" !, whereA is a di- The free energy Eq(2) is the long-wavelength descrip-
mensionless constant. Rescalingspfreveals another char- tion of the smectic film. The nematic directéris locked to
acteristic length scale,=E/(A#’"), apart from the channel the displacement vi@= —const,u. This can be seen by
width and the permeation length. There are several cases thaking a more microscopic approach by a free energy that
can be discussed analytically. includes the nematic director degrees of freedom explicitly,
For L ,>a, the pressure head is mostly balanced by elasf10,11]
tic deformations of the smectic and the strain is given ap-
proximately bys,= — 7'x/E. The dislocation currentis neg- ~. - ~
ligible compared to the elastic contributions, however, it F= 5] d?r[B(9,0)*+D(axu+0)*+Ko(V6)*+E67].
gives rise to the fluid flows,g,=Es|As,|?" Y/ v. The flow (A1)
profile then has the ineresting non-Newtonian form

WITH THE DISPLACEMENT FIELD

HereD measures the free energy cost for nonaligned director

vl y1 to displacementK is the Franck constant arifl the cou-

[a”™ = x[""1], (26 pling of the director to the external field. For an infinite
system the contribution by the director field can be integrated

where y is a continuously variable exponent in the range 00Ut leading to an effective free energy in terms of the Fourier

<y=3+x(T)/2<3. In particular, the velocity is nonlinear transformed displacement field

in the pressure head contrary to conventional Poiseuille flow.

In the opposite cask .<a, we assume that the perme- e lf
ation current can be neglected, except for a boundary layer of T2 q
order 6. Then for |x|<L,, one finds agairs,= — wx/E,
whereas forlx|>L . one observes Poiseuille behavigwg, Expanding to lowest nontrivial order in powers of the wave

Z;(Z//E/ 1)/(.y7'I;r)1/?2y)solution is self-consistent provided | octor g leads to the free energy E€R) with E=DE/(D
i ' +E).

Near the boundary we use the more microscopic free en-
ergy Eq.(Al) and derive the corresponding Euler equations

(m')7 A7

g,(X) = =

BgZ+Dai—

D2g2 -
————> | |Uu 2. (A2
E DGt Ko lu(@)|*. (A2)

V. CONCLUSION

We derived the hydrodynamic equations of motion for a

smectic film stabilized by an external field. Below the Dr?xu—KV20+(D+~E)0=O, (A3a)
Kosterlitz-Thouless transition dislocations are bound in
pairs. However, a finite shear stress applied perpendicularly Ba§u+ Da)z(u— Do,6=0. (A3Db)

to the smectic layers nucleates dislocation pairs. The motion

of these free dislocations results in a nonlinear viscous reThe first equation reveals the characteristic length skgle

sponse. The smectic film exhibits shear-thinning giving rise= \/k/(D +E). For variations of the displacement field with

to unusual flow profiles in channel flow. wave vectorsq<\,' the director field is given byg=

—o,uD/(D+E). Near the boundary where independent

boundary conditions on the director and the displacement
We would like to acknowledge conversations with S. Jainfield can be imposed is a layer of ordeg where the previ-

during the early stages of this investigation. We thank D.0Us relation does not hold. The second equation shows that

Schwartz for discussion on the experimental realization ofhe parameter entering the Euler equations corresponding to

smectic films. This research was supported by the Nationahe effective free energy E=DE/(D +E).
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