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Shear response of a smectic film stabilized by an external field

T. Franosch and D. R. Nelson
Lyman Laboratory of Physics, Harvard University, Cambridge, Massachusetts 02138

~Received 11 December 2000; published 21 May 2001!

The response of a field-stabilized two-dimensional smectic liquid crystal to shear stress is discussed. Below
a critical temperature the smectic film exhibits elastic response to an infinitesimal shear stress normal to the
layering. At finite stresses free dislocations nucleate and relax the applied stress. The coupling of the disloca-
tion current to the stress results in non-Newtonian viscous flow. The flow profile in a channel geometry is
shown to change qualitatively from a power-law dependence to a Poiseuille-like profile upon increasing the
pressure head.

DOI: 10.1103/PhysRevE.63.061706 PACS number~s!: 61.30.2v, 68.03.2g, 47.50.1d, 83.80.Xz
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I. INTRODUCTION

Thin layers of elongated molecules exhibit a variety
different liquid crystalline phases differing in the degree
positional and orientational order from isotropic films. Com
plex rheological properties are common, in particular, wh
external orienting fields affect the alignment of the m
ecules. The coupling of the velocity field to the liquid
crystalline order gives rise to anisotropic viscosities. Furth
more, nonlinearities introduce shear-rate-dependent effec
viscosities, which include phenomena like shear thinni
etc.

Recent experiments on Langmuir monolayers@1–3# on an
air-water interface demonstrate the flow-induced microstr
tural deformations and orientation within a liquid-crystallin
film. In particular, the nonlinear shear response gives ris
unconventional flow profiles in channel geometry. Since d
locations often play a prominent role in two-dimension
systems, the motion of these point defects is presumably
sponsible for many of the observed phenomena.

Here we focus on a smectic film floating on a liquid su
strate. Such systems can be realized by suspending ce
disk-shaped molecules on an air-water interface@4–8#. These
disk-shaped molecules exhibit columnar phases in three
mensions. Restricted to two-dimensional interfaces th
systems exhibit two phases reminiscent of the thr
dimensional columnar order. For the face-on configurat
the structure factor reveals hexatic order, i.e., short-ra
positional order and quasi-long-range orientational order
the nearest-neighbor bond vector. In the second case
edge-on configuration, the molecules order in tw
dimensional columns with liquidlike positional order with
the columns. This second case is thus the two-dimensi
analog of a smectic phase, which we discuss in this pap

Smectic films are two-dimensional layered systems ch
acterized by an elastic free energy that descibes lo
wavelength distortions of the layers in terms of a displa
ment fieldu(rW) @9#. Up to quadratic order, we have

F5 1
2 E d2r @B~]zu!21Bl2~]x

2u!2#, ~1!

where the first term deals with layer compression, while
second term is related to splay distortions. The thermal fl
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tuations destroy even quasi-long-range translational orde
any nonzero temperature. One easily finds that phonons
rise to exponential decay in the order parameterc(rW)
5exp@iq0u(rW)#, whereq052p/d is the wave vector associ
ated with the layer spacingd @10#. In order to moderate the
effect of thermal fluctuations one can apply an in-plane o
enting external field. The corresponding free energy then
to be modified to@11#

F5 1
2 E d2r @B~]zu!21E~]xu!2#. ~2!

Here E measures the coupling to the external field, e.g.,
electric or magnetic field. The nematic director orientation
aligned with the displacement field according tou
52const]xu on large scales. This property does not nec
sarily hold near the boundaries. As discussed in the App
dix, there appears a characteristic length scale on which
director adjusts to the displacement.

One can eliminate the anisotropy in Eq.~2! by a simple
volume-preserving rescaling, and the static properties
thus determined by the universality class of theXY model.
There is a critical temperatureTc}ABE separating a low-
temperature smectic phase characterized by bound disl
tions and power-law correlations in̂c(rW)* c(0)& and a
high-temperature nematic phase with exponential decay
order parameter correlations and free dislocations. Vary
the external field allows control of the anisotropy. In partic
lar, since the ratioE/B is preserved under renormalizatio
one can adjust experimentally the critical temperatureTc .

Here we discuss the dynamical properties of the stabili
smectic liquid crystal belowTc . The long-wavelength renor
malized stiffness constantsER andBR now attain finite non-
zero values and the film reacts as an elastic medium to
infinitesimal applied shear stress perpendicular to the lay
However, a finite stress can trigger the proliferation of fr
dislocations that result in shear flow.

II. HYDRODYNAMICS

The long-wavelength and low-frequency dynamics o
smectic film is governed by hydrodynamic equations for
broken symmetry variable, viz., the layer displacementu,
©2001 The American Physical Society06-1
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and the conserved quantities@9#. For good thermal conduc
tivity on a water substrate no temperature gradients can b
up and energy conservation can be ignored. Furthermore
specialize to incompressible smectic films, setting the m
density r5const. Mass conservation then implies the co
straint ]xgx1]zgz50 for the momentum densitygW (x,z).
Similarly the trace of the viscous stress tensor also drops
of this long-wavelength low-frequency description. The v
cous stress tensor then has only two independent compon
that have to be related to the two of the strain rate ten
From symmetry there appear two indpendent viscosi
and we write the constitutive equation for the visco
stress assxz8 5n(]zgx1]xgz), sxx8 5(n2n8)]xgx , szz8 5(n
2n8)]zgz . The linearized equations of motion then read

] tu5gz /r1lp~B]z
21E]x

2!u, ~3a!

] tgx52]xp1n]z
2gx1n8]x]zgz , ~3b!

] tgz52]zp1~B]z
21E]x

2!u1n]x
2gz1n8]z]xgx , ~3c!

where lp denotes the permeation constant andp the pres-
sure.

If a constant external shear stresssxz
ext is applied, the me-

dium reacts by building up a stationary viscous moment
flow sxz

ext5n]zgx . Since the layers are not distorted no ela
tic stresses can build up to balance the external stress. H
ever, the medium does sustain an infinitesimal external st
szx

ext by straining layers according toszx
ext5E]xu.

The preceding paragraphs correctly describe the linea
sponse of the stabilized smectic film. The nonlinear
sponse, however, is qualitatively different. Finite appli
stresses create free dislocations in the displacement field
can move and relax the stress. For two-dimensional sme
dislocations have Burgers’ vector6d along thez axis ~see
Fig. 1!. Hence, we can think of these dislocations asscalar
defects with chargemn561. In the presence of plastic flow
due to the dislocation motion the film now exhibits visco
behavior. A convenient way to incorporate the effects of d
locations is by switching from a description in terms of t
displacement fieldu to the strainssx ,sz . This avoids the
introduction of branch cuts in the displacement fieldu(x,z).
Locally the strains are given bysx5]xu,sz5]zu. However,
since the displacement field is no longer a single-valu
function, the line integralrG(sxdx1szdz) does not vanish
for closed loopsG, but rather counts the number of enclos
dislocations in units of the layer spacingd. Consequently the
curl of the strain is given by]xsz2]zsx5m(rW)d, where
m(rW)5(n561mnnn(rW) is the total ‘‘charge’’ dislocation
density. The chargesmn561 characterize the point disloca
tions andnn(rW)5( i n

d(rW2rW i n
) is the number density of dis

locations of chargemn . Since dislocations can be create
only in pairs, the overall dislocation density is conserved

] tm1div JW50. ~4!

Here JW denotes the two-dimensional current of dislocati
charge. In terms of the strains, Eq.~4!, is merely the integra-
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bility condition that allows us to set] tsz1Jxd5]zJ, ] tsx
2Jzd5]xJ. Choosing J5gz /r1lp(B]zsz1E]xsx) en-
sures compatability with the dislocation-free dynamics, E
~3a!. Upon collecting terms one derives

] tsx5]xgz /r1lp]x~B]zsz1E]xsx!1Jzd, ~5a!

] tsz5]zgz /r1lp]z~B]zsz1E]xsx!2Jxd, ~5b!

] tgx52]xp1n]z
2gx1n8]x]zgz , ~5c!

] tgz52]zp1~B]zsz1E]xsx!1n]x
2gz1n8]z]xgx .

~5d!

For the dislocation current we adopt a Fokker-Planck
scription. There is a diffusive current due to gradients in
dislocation density. Symmetry dictates that the principal a
of the diffusion tensor are aligned with the (x,z)-coordinate
system of the layers. Furthermore stresses induce mot
that result in a separation of dislocations of opposite cha
Following Ref.@10# we write

Jx5GxBdszn2GxkBT]xm, ~6a!

Jz52GzEdsxn2GzkBT]zm. ~6b!

The first terms on the right-hand side are known as
Peach-Koehler forces and are the analog of the Magnus f
in a superconductor, see Fig. 1. The diffusion constantsDx
5GxkBT and Dz5GzkBT refer to dislocation climb and
glide. Since climb, i.e., motion perpendicular to the Burge
vector, involves long-range mass transport one expectsGx

!Gz . The free dislocation densityn(rW)5(nmn
2nn(rW) van-

ishes in the equilibrium smectic phase since all dislocati

FIG. 1. Layering of the elongated molecules of a tw
dimensional smectic. The dislocation on the right half has posi
‘‘charge,’’ whereas the dislocation on the left possesses nega
‘‘charge,’’ The strainsx exerts a Peach-Koehler force on the fr
dislocations indicated by the arrows. The induced dislocation c
rent then relaxes the strain.
6-2
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SHEAR RESPONSE OF A SMECTIC FILM STABILIZED . . . PHYSICAL REVIEW E63 061706
are bound. Thus thelinear dynamics given by Eqs.~5! and
~6! merely adds an anisotropic diffusive mode for dislocat
motion to Eqs.~3!.

A nonzero free dislocation densityn(rW) leads to viscous
response to an external shearszx

ext as shown in Ref.@13#.
Shearing perpendicular to the layers of the smectic film
produce a nonzerosx']xu liberates free dislocations tha
then can relax the shear. Thus one has a most promi
form of the phenomenon known as shear thinning, i.e
reduction from an infinite linear viscosity and a nonzero l
ear elastic modulus to a finite nonlinear viscosity and z
nonlinear elastic shear modulus. This is the subject of
next two sections where we adopt methods applied to su
fluid helium films in Ref.@12# to smectic hydrodynamics.

III. NUCLEATION RATE OF FREE DISLOCATIONS

The free energy of Eq.~2! contains contributions from the
smooth part of the strain and from the interaction energy
dislocations. The strains can be decomposed assx5]xf
1sx

sing , sz5]zf1sz
sing . Then the smooth part and the di

location interaction decouple provided one imposes the st
equlibrium condition

E]xsx
sing1B]zsz

sing50. ~7!

This relation is in fact the integrability condition that allow
the introduction of the Airy stress functionEsx

sing52]zx,
Bsz

sing5]xx. Since the curl of the strain yields the disloc
tion density, the Airy stress function is given in terms of t
solution of

1

B
]x

2x1
1

E
]z

2x5m~rW !d. ~8!

After a partial integration the free energy Eq.~2! can be
written

F5F02 1
2 E d2rx~rW !m~rW !d, ~9!

where the smooth fluctuations of the displacement field
encoded in

F05 1
2 E d2r @B~]zf!21E~]xf!2#. ~10!

The dislocation contribution is the smectic analog of the
teraction energy of charges in electrostatics. Here,m(rW) cor-
responds to the electric charge density andx(rW) to the elec-
trostatic potential. As mentioned in Sec. I the electrosta
analogy becomes complete after the volume preserv
transformationx5aj, z5z/a, with a5(E/B)1/4. Equation
~8! then reads

]j
2x1]z

2x5mdBa2. ~11!

The bare interaction energy of a pair of dislocations of o
posite charge61 is then easily calculated to be
06170
o

nt
a
-
o
e
r-

f

ss

re

-

c
g

-

U0~% !5
Ba2d2

2p
ln~%/a0!12Ec~a0!, ~12!

where %5Aj21z2 is the distance of the dislocations i
scaled units anda0;d is a short distance cutoff that signa
the breakdown of continuum elasticity theory. The core e
ergy 2Ec(a0) plays the role of a chemical potential, i.e., th
energy to create a defect pair at distancea0 relative to a
dislocation free system. Since there are many pairs, the
fective interaction of a particular pair is a many-body pro
lem. The pair carries a polarization cloud of bound pairs t
screen the bare interaction. Following Kosterlitz and Tho
less@11# this problem can be dealt with by the introductio
of a scale-dependent dielectric constante(%). The effective
interaction then reads

U~% !5
Ba2d2

2p E
a0

% d%8

e~%8!%8
12Ec~a0!. ~13!

The probabilityY(%) per unit area to find a pair at distanc
% is then determined by the effective interactionY(%)
5a0

24 exp@2U(%)/kBT#, or equivalently

dY

d%
52

Ba2d2

2pkBTe~% !%
Y~% !. ~14!

In terms of a scale-dependent stiffnessK(%)
5Ba2d2/@4p2kBTe(%)# and the dislocation fugacityy,
wherey(%)25%4Y(%), this is the first of the celebrated Ko
sterlitz recursion relations

dy

d ln %
5@22pK#y. ~15!

The renormalization of the stiffness is due to polarization
the dislocation pairs and is governed by the second recur
relation

dK21

d ln %
54p3y2. ~16!

The flow equations for the dielectric constant and the fug
ity then reveal the existence of a low-temperature phase w
a finite long-wavelength dielectric constant. Sincee(%) de-
pends intrinsically only on the flow parameterl 5 ln(%/a0) the
first term in the effective potential is basically logarithm
and binds the pair only weakly.

In the presence of a strainsx the pair is subjected to the
Peach-Koehler forceEsxd that separates the pair inz direc-
tion in addition to the attraction force corresponding to E
~13!. For nonzerosx the total potential exhibits a saddle poi
on thez axis and the pair can break up by escaping over
barrier as illustrated in Fig. 2. This creates a pair of fr
dislocations that contributes to the relaxation of the appl
shear.

The motion of bound pairs is again given in terms of
Fokker-Planck equation@12#. Since climb motion is much
6-3
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slower than glideGx!Gz the associated currents are pr
dominately unidirectional. With this simplification one d
rives

] tY5]zJz ,
~17!

Jz522GzY@]zU1Esxd#22kBTGz]zY.

Since we are dealing with therelative motion of a pair, the
diffusion constant is 2Dz , whereDz5GzkBT refers to diffu-
sion of a single dislocation. The escape rate of this eff
tively one-dimensional problem can be obtained by stand
methods. The saddle pointz05z0 /a of the total potential
determined by the implicit relationd12pe(uz0u)z0sxa50.
For definiteness we discuss the casesx,0, i.e., the saddle
point lies on the positivez axis. The Fokker-Planck equatio
~17! implies thatJz is independent of thez coordinate. The
solution can be obtained in terms ofc5@U1Esxzd#/kBT by
writing

JzE
z

`

ecdz8522kBTGze
cYuz

` . ~18!

For z51` we expect that the dislocation probability dens
Y vanishes rapidly, whereas foruzu!z0 it assumes its equ
librium value. The right-hand side of Eq.~18! then simplifies
to 2kBTGza0

24. The left-hand side is dominated by the sadd
point and the integral can be extended to2`. Upon expand-
ing near the saddle point and using the saddle-point equa
the Boltzmann weight can be approximated by

ec5
z0

4e22pK(z0)

a0
4y~z0!2

expFpK~z0!
x2

a2z0
2

2pK~z0!
a2~z2z0!2

z0
2 G .

~19!

Here we neglected terms involving the derivative of the
electric constant, since these are small on large scales
cording to Eq.~16!. The dislocation current is then found a

FIG. 2. Sketch of the effective potential for a dislocation pair
the presence of shearkBTc5U1Esxzd. The heavy line marks the
boundary of bound- and free-dislocation pairs. Breaking of a bo
pair occurs via escape over the saddle point. Since climb motio
negligible compared to glide thex coordinate is effectivley frozen
06170
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Jz5RAK(z0)/(az0)exp@2pK(z0)x
2/(a2z0

2)#, where the pro-
duction rateR5*2`

` Jzdx reads

R52kBTGza
2y~z0!2z0

24e2pK(z0). ~20!

For small strainsx and not too close to the critical temper
ture, one findsz0@j2 , wherej2 is the correlation length
implied by the recursion relations, Eqs.~15! and ~16!. Then
K(z0) can be safely replaced by its large distance lim
K(%5`)52/p@11x(T)/4#. Here x(T) measures the dis
tance to the critical point, and for temperatures close toTc
one hasx(T);(Tc2T)1/2. Equation~15! then implies in this
regime y(%);%2x(T)/2 and correspondingly the productio
rate exhibits a power-law dependence on the strain

R;usxu41x(T). ~21!

The dynamics of the free dislocation density is govern
by the rate equation

] tn5R2rn2. ~22!

The recombination process of two free dislocations of op
site charge is encoded in the rate constantr. Since local
equlibrium is established much faster than dynamics of
broken and conserved variables, one can assume that the
dislocation density follows the rate adiabatically, i.e,n
;R1/2;usxu21x(T)/2.

A stationary, uniform external stressszx
ext is balanced by a

uniform strain Esx , Eq. ~5d!. This results in a nonlinea
dislocation flowJz;sx

g , g531x(T)/2, which gives rise to
shear strain rates]xgz52Jzrd. Upon collecting terms one
derives the nonlinear constitutive equation

]xgz;~szx
ext!g, ~23a!

g531x~T!/2. ~23b!

IV. CHANNEL FLOW

In this section we discuss the application of these idea
flow of the stabilized smectic due to a pressure gradi
along a channel. The film layers are oriented perpendicul
to the channel flow, i.e., the pressure gradient is along thz
direction. Furthermore we assume that the channel is m
wider than the correlation lengthj2 so that the hydrody-
namic description is valid.

In the steady state allz derivatives vanish due to transla
tional invariance along the channel, except for the press
headp852]zp5const. The equations of motion Eqs.~5!
then reduce to

05]xgz /r1lpE]x
2sx1Jzd, ~24a!

05p81E]xsx1n]x
2gz . ~24b!

Furthermore we impose the no-slip boundary condit
gz(6a)50 and vanishing permeation current]x

2sx(6a)
50, where6a are the walls of the channel. Symmetry the

d
is
6-4
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implies ]xgz(0)5]x
2sx(0)5sx(0)50. The derivative]xgz

can now be eliminated from Eq.~24! yielding

2p8x/E5sx2d2]x
2sx2rnJzd/E, ~25!

where we introduced the permeation lengthd5(rnlp)1/2.
Since the dislocation current is nonlinear in the strain,
flow profile depends on the pressure head. The combina
rnJzd/E can be written as2sxuAsxug21, whereA is a di-
mensionless constant. Rescaling ofsx reveals another char
acteristic length scaleLp5E/(Ap8), apart from the channe
width and the permeation length. There are several cases
can be discussed analytically.

For Lp@a, the pressure head is mostly balanced by e
tic deformations of the smectic and the strain is given
proximately bysx52p8x/E. The dislocation current is neg
ligible compared to the elastic contributions, however,
gives rise to the fluid flow]xgz5EsxuAsxug21/n. The flow
profile then has the ineresting non-Newtonian form

gz~x!5
~p8!gAg21

~g11!nEg21
@ag112uxug11#, ~26!

whereg is a continuously variable exponent in the range
<g531x(T)/2<3. In particular, the velocity is nonlinea
in the pressure head contrary to conventional Poiseuille fl

In the opposite caseLp!a, we assume that the perme
ation current can be neglected, except for a boundary laye
order d. Then for uxu!Lp , one finds againsx52px/E,
whereas foruxu@Lp one observes Poiseuille behavior]xgz
52p8x/n. The solution is self-consistent providedd
!a(a/Lp)(g21)/(2g).

V. CONCLUSION

We derived the hydrodynamic equations of motion fo
smectic film stabilized by an external field. Below th
Kosterlitz-Thouless transition dislocations are bound
pairs. However, a finite shear stress applied perpendicu
to the smectic layers nucleates dislocation pairs. The mo
of these free dislocations results in a nonlinear viscous
sponse. The smectic film exhibits shear-thinning giving r
to unusual flow profiles in channel flow.
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APPENDIX: ALIGNMENT OF THE NEMATIC DIRECTOR
WITH THE DISPLACEMENT FIELD

The free energy Eq.~2! is the long-wavelength descrip
tion of the smectic film. The nematic directoru is locked to
the displacement viau52const]xu. This can be seen by
taking a more microscopic approach by a free energy
includes the nematic director degrees of freedom explici
@10,11#

F̃5 1
2 E d2r @B~]zu!21D~]xu1u!21K0~¹W u!21Ẽu2#.

~A1!

HereD measures the free energy cost for nonaligned dire
to displacement,K0 is the Franck constant andẼ the cou-
pling of the director to the external field. For an infini
system the contribution by the director field can be integra
out leading to an effective free energy in terms of the Fou
transformed displacement field

F5 1
2 E

q
FBqz

21Dqx
22

D2qx
2

Ẽ1Dqx
21K0q2G uu~qW !u2. ~A2!

Expanding to lowest nontrivial order in powers of the wa
vector qW leads to the free energy Eq.~2! with E5DẼ/(D
1Ẽ).

Near the boundary we use the more microscopic free
ergy Eq.~A1! and derive the corresponding Euler equatio

D]xu2K¹2u1~D1Ẽ!u50, ~A3a!

B]z
2u1D]x

2u2D]xu50. ~A3b!

The first equation reveals the characteristic length scalel0

5AK/(D1Ẽ). For variations of the displacement field wit
wave vectorsq!l0

21 the director field is given byu5

2]xuD/(D1Ẽ). Near the boundary where independe
boundary conditions on the director and the displacem
field can be imposed is a layer of orderl0 where the previ-
ous relation does not hold. The second equation shows
the parameter entering the Euler equations correspondin
the effective free energy isE5DẼ/(D1Ẽ).
@1# C. Mingotaud, B. Agricole, and C. Jego, J. Phys. Chem.99, 17
068 ~1995!.

@2# T. Maruyama, G. Fuller, C. Frank, and C. Robertson, Scie
274, 233 ~1996!.

@3# M.L. Kurnaz and D.K. Schwartz, Phys. Rev. E56, 3378
~1997!.
e

@4# J.Y. Josefowiczet al., Science260, 323 ~1993!.
@5# D. Gidalevitzet al., J. Phys. Chem. B101, 10 870~1997!.
@6# D. Gidalevitzet al., Langmuir14, 2910~1998!.
@7# D. Gidalevitzet al., J. Phys. Chem. B102, 6688~1998!.
@8# C. Mertesdorfet al., Liq. Cryst.5, 1757~1989!.
@9# P. G. de Gennes and J. Prost,The Physics of Liquid Crystals,
6-5



-

.D.

T. FRANOSCH AND D. R. NELSON PHYSICAL REVIEW E63 061706
2nd ed.~Oxford University Press, Oxford, 1993!.
@10# J. Toner and D.R. Nelson, Phys. Rev. B23, 316 ~1981!.
@11# See, e.g., D. R. Nelson inPhase Transitions and Critical Phe

nomena, edited by C. Domb and J. Lebowitz~Academic, Lon-
don, 1983!, Vol. 7, pp. 76–79.
06170
@12# V. Ambegaokar and B.I. Halperin, and D.R. Nelson, and E
Siggia, Phys. Rev. B21, 1806~1980!.

@13# T. Franosch, S. Jain, and D.R. Nelson, Phys. Rev. E61, 3942
~2000!.
6-6


